NAG C Library Function Document

nag generate agarchII (g05hlc)

1 Purpose

nag_generate_agarchII (g05hlc) generates a given number of terms of a type II AGARCH(p,q) process (see Engle and Ng (1993)).

2 Specification

3 Description

A type II AGARCH(p, q) process can be represented by:

$$\epsilon_t | \psi_{t-1} \sim N(0, h_t)$$

$$h_t = \alpha_0 + \sum_{i=1}^q \alpha_i (|\epsilon_{t-i}| + \gamma \epsilon_{t-i})^2 + \sum_{i=1}^p \beta_i h_{t-i}, \quad t = 1, \dots, T.$$

Here T is the number of observations in the sequence, ϵ_t is the *observed* value of the GARCH(p,q) process at time t, h_t is the conditional variance at time t, and ψ_t the information set of all information up to time t. Symmetric GARCH(p,q) sequences are generated when γ is zero, otherwise asymmetric GARCH(p,q) sequences are generated with γ specifying the amount by which positive (or negative) shocks are to be enhanced.

4 Parameters

1: **num** – Integer Input

On entry: the number of terms in the sequence, T.

Constraints:

 $\begin{aligned} & \text{num} \, \geq \, 1, \\ & \text{num} \, > \, \textbf{p} \! + \! \textbf{q} \! + \! 1. \end{aligned}$

2: \mathbf{p} - Integer Input

On entry: the GARCH(p, q) parameter p.

Constraint: $\mathbf{p} \geq 0$.

3: \mathbf{q} - Integer Input

On entry: the GARCH(p, q) parameter q.

Constraint: $q \ge 1$.

4: **theta[q+p+1]** – const double

Input

On entry: the first element contains the coefficient α_o , the next \mathbf{q} elements contain the coefficients α_i , $i=1,\ldots,q$. The remaining \mathbf{p} elements are the coefficients β_j , $j=1,\ldots,p$.

[NP3491/6] g05hlc.1

5: **gamma** – double

Input

On entry: the asymmetry parameter γ for the GARCH(p,q) sequence.

6: **ht[num]** – double

Output

On exit: the conditional variances h_t , t = 1, ..., T for the GARCH(p, q) sequence.

7: **et[num]** – double

Output

On exit: the observations ϵ_t , t = 1, ..., T for the GARCH(p, q) sequence.

8: **fcall** – Nag Garch Fcall Type

Input

On entry: if fcall = Nag_Garch_Fcall_True then a new sequence is to be generated, else if fcall = Nag_Garch_Fcall_False a given sequence is to be continued using the information in rvec.

9: rvec[2*(p+q+1)] – double

Input/Output

On entry: the array contains information required to continue a sequence if fcall = Nag Garch Fcall False.

On exit: contains information that can be used in a subsequent call of nag_generate_agarchII, with fcall = Nag_Garch_Fcall_False.

10: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE BAD PARAM

On entry, parameter fcall had an illegal value.

NE_INT_ARG_LT

On entry, **p** must not be less than 0: $\mathbf{p} = \langle value \rangle$.

On entry, \mathbf{q} must not be less than 1: $\mathbf{q} = \langle value \rangle$.

On entry, **num** must not be less than 1: **num** = $\langle value \rangle$.

On entry, $\mathbf{num} = \langle value \rangle$ while $\mathbf{p} + \mathbf{q} + 1 = \langle value \rangle$

These parameters must satisfy **num** \geq **p**+**q**+1.

6 Further Comments

6.1 Accuracy

Not applicable.

6.2 References

Engle R (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation *Econometrica* **50** 987–1008

Bollerslev T (1986) Generalised Autoregressive Conditional Heteroskedasticity *Journal of Econometrics* **31** 307–327

Engle R and Ng V (1993) Measuring and Testing the Impact of News on Volatility *Journal of Finance* 48 1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

g05hlc.2 [NP3491/6]

7 See Also

None.

8 Example

See the example for nag_estimate_agarchII (g13fcc).

[NP3491/6] g05hlc.3 (last)